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Motivation Methodology

Negative-aware matrix construction:
* Negative-aware Matrix:

With the rapid development of online services over the last decade, collaborative
filtering (CF) is a common powerful approach that generates user

recommendations. Existing traditional CF treating the majority of unseen 0 f Ul 4 =0
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interactions as negative ones. Yet this may introduce noise into the modeling
process as unseen interactions are not necessarily to be negative instances. @ Mui = ( o §ukaki) ,
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Disadvantages of Traditional CF:

X Treating the majority of unseen interactions as negative ones. where di; € @ and S € @ |
X Introducing noise into the modeling process.
@ If a user has not purchased a certain item, the user is not interested in it. » Asymmetric user preference similarity matrix:
. I;nI
® Si="fr
Approach:
* Quantifying the degree of uncertainty for unseen associations by leveraging Negative-aware pointwise and pairwise approaches:
user preference similarity. @ Ly = Z aui (1= 6076, + (1 = awi) (nui — 656, + 1||0)2
* Modeling the likelihood of each unseen association being a potentially positive 1,1
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@ Bipartite graph @ User preference similarity matrix @ Negative-aware CF
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@ Adjacency matrix @ Negative-aware matrix

Experiments Conclusion
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Remarks:

* Negative-aware collaborative filtering ...

v/ explicitly addresses the uncertainty of unseen user-
item associations by leveraging asymmetric user
preference.

v can be seen as a generic device applicable to other
recommendation algorithms with the use of negative
sampling.

Dataset: |
* MovieLens-100k: Users to Movies Data 2
« Citeulike: Citation Data '

Baseline of CF approach:

* Pointwise: Matrix Factorization (MF)
e Pairwise: Bayesian Personalized Ranking (BPR)
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Dataset Movielens CiteULike  Empirical results show that our approach improves the
P@5 MAP@5 P@10 MAP@10 P@5 MAP@5 P@10 MAP@I10 performance of both pointwise and pairwise
MF 0.237 0.169  0.199 0.123  0.060 0.058  0.045 0.048 recommendation models.
MF-aware “0.241 “0.173 “0.202 “0.125 0.062 “0.061 70.048 “0.052 Paper link
BPR 0.257 0.189 0.211 0.136 0.064 0.064 0.049 0.054 Takeaway' E == E
BPRn-aware 0.262 ***0.195 *70.214 **0.140 70.066 0.066 70.050 0.055 * Negative-aware approach initiates a study |
» Observation 1: Negative-aware works in both two approaches. of further tailoring negative sampling by -
« Observation 2: Negative-aware models are generally capable of maintaining better performance quantifying the degree of uncertainty for
than the traditional models at each training epoch. unseen associations.
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