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Introduction

Barrier options are derivatives that are knocked in or knocked out
when the price of the underlying asset reaches a specific level during
the life of the options.

These types of contracts are popular because they are less expensive
than the identical vanilla options and provide additional flexibility.
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Related Work

Merton (1973) first proposes a closed-form solution for a European
down-and-out call.

Rubinstein and Reiner (1991), Benson and Daniel (1991), and
Hudson (1992) provide further extensions.

Carr (1995) develops closed-form solutions for two extensions of
European up-and-out call options: protected barrier options and
rainbow barrier options.

Barrier options with discrete monitoring dates have been studied in,
for example, Broadie et al. (1997) and Fusai et al. (2006).

However, little has been published on the analytical solutions for
derivatives with both continuously and discretely monitored barriers.
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Main Results

This paper presents a methodology to derive closed-form solutions
for a class of derivative products with one continuously and a few
discretely monitored barriers.

This class of structured products is called knock-out double-income
(KODI).

A concrete one was issued by Taiwan’s Polaris Securities in 2004.
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The Economic Rationale of KODI

In 2004, the technology sector of Taipei’s stock market declined
substantially in market value, and investors suffered heavy losses of
approximately 20%.

A typical investor behavior would be to sell the stock the moment it
regains the initial purchase price or hold the stock if their market
value continues to slide.

Polaris advised their clients to sell off the stock, and buy a product
from the KODI class linked to the same stock.
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The Economic Rationale of KODI (cont.)

The KODI is a structured product with a one-year tenor and 4
monitoring dates, once every quarter.

The product has three distinctive features.

First, the holder will obtain a 120% rebate when the stock exceeds
110% of the initial price at each monitoring date (the
double-income part).
Second, the stock will be returned to the holder as the stock price
hits the continuous low barrier, which is 85% of the initial price.
Finally, if this KODI does not mature early, the holder will be paid
the initial price at maturity if the stock price is less than the initial
stock price (the principal guarantee feature).
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The Economic Rationale of KODI (cont.)
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Figure: Graphical Representation of KODI.
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Valuation of KODI

The stock price follows a geometric Brownian motion with a
constant volatility σ, constant riskless rate r , and constant dividend
yield q:

dSt = (r − q)Stdt + σStdWt ,

where Wt denotes a standard Brownian motion under the
risk-neutral measure P.

9 / 21

A Closed-form Formula for an Option with Discrete and Continuous Barriers



Introduction Valuation Numerical Results Conclusion

Valuation of KODI (cont.)

We examine a product from the KODI class with maturity T and 3
monitoring dates t1, t2, and t3 = T for simplicity.

At each monitoring date, if the price of the stock exceeds the
discrete high barrier H, KODI will mature early and the holder will
receive the rebate R.

On the other hand, if at any time the price of the stock hits below
the continuous low barrier L, KODI will mature early and the
underlying stock will be returned to the holder.

If KODI does not mature early, there are two cases at maturity.

If the stock price ST is greater than the initial price S0, the payoff
will be ST .
Otherwise, the client will be paid the initial price S0.
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Valuation of KODI (cont.)

We first normalize the variables as follows.

Xt ≡ ln(St/S0).
By Ito’s lemma,

dXt = µ dt + σdWt ,

where µ = r − q − σ2/2.
Moreover, let h ≡ ln(H/S0) and ` ≡ ln(L/S0).

Define mab = minu∈[ta,tb ]Xu and denote 1{A} as the indicator
function of the event A.
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Valuation of KODI (cont.)

The value of our KODI with 3 monitoring dates (U) can be
decomposed into three parts:

U = A + B + C .

The first type of expectations, Eqs. (1), (2), and (3), deals with the
events that the KODI knocks out because of hitting the low barrier
`.

A = E
[
e−rτSτ1{m01 < `}

]
(1)

+ E
[
e−rτSτ1{m01 > `,X1 < h,m12 < `}

]
(2)

+ E
[
e−rτSτ1{m01 > `,X1 < h,m12 > `,X2 < h,m23 < `}

]
(3)

Define µ̃ =
√
µ2 + 2σ2r .

The first type of expectations can be evaluated as

E [e−rτ · 1{event}] = e`(µ−µ̃)/σ2
Ẽ [1{event}] = e`(µ−µ̃)/σ2

P̃(event),

where the drift of the process X is µ̃ under the probability measure
P̃.
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Valuation of KODI (cont.)

The second type of expectations handles the cases with a constant
rebate where the KODI does not knock out in the previous stages
and the stock price falls within a certain range at each monitoring
date:

B = E
[
e−rt1R1{m01 > `,X1 > h}

]
(4)

+ E
[
e−rt2R1{m01 > `,X1 < h,m12 > `,X2 > h}

]
(5)

+ E
[
e−rt3R1{m01 > `,X1 < h,m12 > `,X2 < h,m23 > `,X3 > h}

]
(6)

+ E
[
e−rt3S01{m01 > `,X1 < h,m12 > `,X2 < h,m23 > `,X3 < X0}

]
(7)

Eqs. (4), (5), and (6) are for the events that the KODI knocks out
because of hitting the high barrier h, and
Eq. (7) handles the principal guarantee feature at maturity when
the KODI does not mature early and X3 < X0.
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Valuation of KODI (cont.)

For the second type of expectations, the identity,

E [e−rtiR · 1{event}] = e−rtiRP(event),

can be applied to Eqs. (4), (5), and (6) with i = 1, 2, 3, respectively,
whereas

E [e−rt3S0 · I{event}] = e−rt3S0P(event)

can be applied to Eq. (7).
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Valuation of KODI (cont.)

Equation (8) is of the third type, related to the events that the
KODI does not knock out but X0 < X3 < h:

C = E
[
e−rt3St3 · I{m01 > `,X1 < h,m12 > `,X2 < h,m23 > `,X0 < X3 < h}

]
(8)

For the third type of expectation, Eq. (8), we define
µ∗ = µ+ σ2/2 = r − q + σ2/2 and obtain

E [e−rt3St3 · I{event}] = S0E
∗[I{event}] = S0P

∗(event),

where the drift of the process X is µ∗ under the probability measure
P∗.

As P̃(event) and P∗(event) can be directly obtained by replacing µ
in P(event) with µ̃ and µ∗, respectively, we shall cover how to derive
the probabilities under the risk-neutral probability measure P only.
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Valuation of KODI (cont.)
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Figure: Three Types of Expectations.
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An Example

We take the derivation of P(m01 > `,X1 < h,m12 < `) (the
probability in Eq. (2)) an example.

First, we have

P(m01 < `) = N

(
`− µt1

σ
√
t1

)
+ e2µ`/σ2

N

(
`+ µt1

σ
√
t1

)
(9)

and

P(m01 > `,X1 > h) = N

(
−h + µt1

σ
√
t1

)
− e2µ`/σ2

N

(
−h + 2`+ µt1

σ
√
t1

)
. (10)

By Eq. (9) and the stationary-increment property of Brownian
motion,

P (m12 < `|X1 = x) = N

(
`− x − µ(t2 − t1)

σ
√
t2 − t1

)
+ e2µ(`−x)/σ2

N

(
`− x + µ(t2 − t1)

σ
√
t2 − t1

)
. (11)
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An Example (cont.)

Now, by Eq. (10),

P (m01 > `,X1 < x) = P (m01 > `)− N

(
−x + µt1

σ
√
t1

)
+ e2µ`/σ2

N

(
2`− x + µt1

σ
√
t1

)
.

Define p (x) ≡ dP (m01 > `,X1 < x) /dx . Then,

p (x) =
1

σ
√
t1
n

(
−x + µt1

σ
√
t1

)
−

e2µ`/σ2

σ
√
t1

n

(
2`− x + µt1

σ
√
t1

)
. (12)

Therefore,

P(m01 > `,X1 < h,m12 < `)

=

∫ h

`
P (m12 < `|X1 = x) dP (m01 > `,X1 < x)

=

∫ h

`

(
N

(
`− x − µ(t2 − t1)

σ
√
t2 − t1

)
+ e2µ(`−x)/σ2

N

(
`− x + µ(t2 − t1)

σ
√
t2 − t1

))
·
(

1

σ
√
t1

n

(
−x + µt1

σ
√
t1

)
−

e2µ`/σ2

σ
√
t1

n

(
2`− x + µt1

σ
√
t1

))
dx . (13)
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An Example (cont.)

We will need the reduction formula of Curnow and Dunnett (1962),
which expresses the n-dimensional multinormal CDF as the integral
of a normal PDF multiplied by an (n − 1)-dimensional multinormal
CDF.

In particular, the 2-dimensional case of the reduction formula is

∫ a

−∞
n (w)N (α+ βw) dw = N2

({
a,

α√
1 + β2

}
;

(
1 ρ
ρ 1

))
, (14)

where ρ = −β√
1+β2

.
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Valuation of KODI

KODI Values and CPU Times
Formula Simulation

Value Time (sec) Value Time (sec) Error (%)
Base case 1.00061 2.70 1.00112 376.95 −0.051
S0 0.95 0.94814 2.64 0.94304 377.36 0.541

1.05 1.05168 2.66 1.06141 376.89 −0.917
σ 10% 1.00868 2.84 1.00908 377.02 −0.040

30% 0.98553 2.61 0.98547 377.39 0.006
r 1% 1.00061 2.67 1.00112 376.83 −0.051

4% 1.00054 2.70 1.00105 376.75 −0.051
q 3% 1.00563 2.67 1.00614 376.95 −0.050

5% 0.99561 2.69 0.99601 376.86 −0.041

MAPE (%) 0.22548 RMSPE (%) 0.37478

Table: The Values and CPU Times of Pricing Our KODI.
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Conclusion

This paper presents a methodology to derive closed-form solutions
for a class of derivative products with one continuously and a few
discretely monitored barriers.

The methodology can be extended to price the products with
complex barrier structures.

The analytical results may inspire the design of new exotic options.
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