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Our Strong Baseline! But...

Retrieval Origin Title

Re-ranking Origin Title

R@1000 0.440 0.774

mAP 0.069 0.187

mRR@10 0.120 0.273



Historical Query Expansion



Motivation:
Why some queries get better mAP scores?  

Session1:

1 What is a physician's assistant?

2 What are the educational requirements required to become one?

3 What does it cost?

4 What's the average starting salary in the UK?

5 What about in the US?

6 What school subjects are needed to become a registered nurse?

7 What is the PA average salary vs an RN?

8 What the difference between a PA and a nurse practitioner?

9 Do NPs or PAs make more?

10 Is a PA above a NP?

11 What is the fastest way to become a NP?

12 How much longer does it take to become a doctor after being an NP?



Observation 1:
Ambiguous queries can be detected automatically

Score Query

11.73 What is a physician's assistant?

14.96 What are the educational requirements required to become one?

9.29 What does it cost?
Query Doc1 Score1

Doc2 Score2

... ...

DocN ScoreN



Observation 1:
Ambiguous queries can be detected automatically

Score Query

11.73 What is a physician's assistant?

14.96 What are the educational requirements required to become one?

9.29 What does it cost?



Observation 2:
Keywords can be extracted from queries 

Score Query

11.73 ['What', 'is', 'a', 'physician', "'s", 'assistant', '?']
[3.13,    -1, -1,      5.87,      3.58,    4.24,     -1]

14.96 ['What', 'are', 'the', 'educational', 'requirements', 'required', 'to', 'become', 'one', '?']
[3.13,     -1,    -1,         3.92,                3.75,            3.75,      -1,     3.48,     2.09, -1]

9.29 ['What', 'does', 'it', 'cost', '?']
[3.13,    3.90,  -1,  3.42,  -1] Word Doc1 Score1

Doc2 Score2

... ...

DocN ScoreN



Observation 3:
Tree structure of keywords

educational, 
requirements

physician, assistant

become cost

Score Query

11.73 ['What', 'is', 'a', 'physician', "'s", 'assistant', '?']
[3.13,    -1, -1,      5.87,      3.58,    4.24,     -1]

14.96 ['What', 'are', 'the', 'educational', 'requirements', 'required', 'to', 'become', 'one', '?']
[3.13,     -1,    -1,         3.92,                3.75,            3.75,      -1,     3.48,     2.09, -1]

9.29 ['What', 'does', 'it', 'cost', '?']
[3.13,    3.90,  -1,  3.42,  -1]



Assumption
Topic keywords

Subtopic 
keywords

Detail

A clear query requires:

1. Topic keywords: last along the whole session
2. Subtopic keywords: last along several turns
3. Detail: last only one turn   



Methodology

For each query:

1. Extract topic keywords (R1=4)   
2. Extract subtopic keywords (R2=3.5)
3. Check if a query is ambiguous (θ=10)

a. Yes: Add topic keywords except for the first query
b. No: Add topic keywords + subtopic keywords extracted from previous N turns

Topic keywords

Subtopic 
keywords

Detail

A clear query requires:

1. Topic keywords: last along the whole session
2. Subtopic keywords: last along several turns
3. Detail: last only one turn   



Methodology
physician, assistant

Score Query

11.73 ['What', 'is', 'a', 'physician', "'s", 'assistant', '?']
[3.13,    -1, -1,      5.87,      3.58,    4.24,     -1]



Methodology

educational, 
requirements

physician, assistant

become

Score Query

11.73 ['What', 'is', 'a', 'physician', "'s", 'assistant', '?']
[3.13,    -1, -1,      5.87,      3.58,    4.24,     -1]

14.96 ['What', 'are', 'the', 'educational', 'requirements', 'required', 'to', 'become', 'one', '?']
[3.13,     -1,    -1,         3.92,                3.75,            3.75,      -1,     3.48,     2.09, -1]
+ ['physician', 'assistant']



Methodology

educational, 
requirements

physician, assistant

become cost

Score Query

11.73 ['What', 'is', 'a', 'physician', "'s", 'assistant', '?']
[3.13,    -1, -1,      5.87,      3.58,    4.24,     -1]

14.96 ['What', 'are', 'the', 'educational', 'requirements', 'required', 'to', 'become', 'one', '?']
[3.13,     -1,    -1,         3.92,                3.75,            3.75,      -1,     3.48,     2.09, -1]
+ ['physician', 'assistant']

9.29 ['What', 'does', 'it', 'cost', '?']
[3.13,    3.90,  -1,  3.42,  -1]
+ ['physician', 'assistant'] + ['educational', 'requirements', 'required']



Result

Retrieval Origin Title HQExp

Re-ranking Origin Title HQExp

R@1000 0.440 0.774 0.818

mAP 0.069 0.187 0.192

mRR@10 0.120 0.273 0.264



Historical Answer Expansion



Motivation

Reference:
[1] Qu, Chen, et al. BERT with History Answer Embedding for 
Conversational Question Answering. 2019. In SIGIR 1133-1136.

● A rule-based model for history selection [1]

● Given (p, q
k
, a

k
, H

k
), where H

k
 stands for the 

history of (q
k
, a

k
) pairs

● A subset of history turns: H
k

’ = H
k-T

 is considered 

useful, where T = # of lagged turns



Assumption

● Semantic of q
k 

changed smoothly within a conversation: 

𝜑(q
k-1

)~= 𝜑(q
k
), where 𝜑 stands for semantic mapping 

function

● Historical answer candidates are less important

Example

Session1:

1 What is a physician's assistant?

2 What are the educational requirements 

required to become one?

3 What does it cost?

4 What's the average starting salary in 

the UK?

5 What about in the US?

6 ...



Methodology

● Consider previous one turn only: H
k

’ = H
k-1

● Just apply pretrained BERT as our query-passage 

likelihood function

● Log-likelihood of BERT(q
k-1

, a
k-1

) is modulated by a 

hyperparameter 𝜆
● Take top-1000 by sorted list with [BERT(q

k
, a

k
), 𝜆 * 

BERT(q
k-1

, a
k-1

)]

● Fine-tuning with BERT(q
k
, set(a

k
,
 
a

k-1
)

top-1000
)

History Selection

Fine tuning

𝜆



Results - Training Set of CAsT

Retrieval Title Title HQExp HQExp

Re-ranking Title HQExp Title HQExp

R@1000 0.755 0.755 0.818 0.818

mAP 0.188 0.194 0.189 0.192

mRR@10 0.274 0.281 0.257 0.264

+HAExp

R@1000 0.772 0.772 0.844 0.844

mAP 0.187 0.191 0.193 0.197

mRR@10 0.273 0.277 0.268 0.277

● HAE improves recall in all cases

○ Subset of history is useful

● HAE + full HQE in both stages 

have the best performance in 

recall and ranking

○ 3rd fine-tuning procedure 

is helpful in this 

combination



Other Methods



Query (Corpus) Expansion

Reference:
[2] Victor Lavrenko and W. Bruce Croft�. 2001. Relevance 
Based Language Models. In SIGIR. 120–127

[3] Nogueira, Rodrigo, et al. Document Expansion by Query 
Prediction. 2019. In arXiv preprint arXiv:1904.08375.

● RM3 (Query)
○ Relevance feedback model 

implemented in Anserini [2]

○ We use RM3 to improve recall in the 

first stage

● Doc2Query (Corpus)
○ Seq2seq query generation model 

pre-trained on MS MARCO [3]

○ Use predicted top-5 queries from D2Q 

to expand only one of the three corpus 

(MS MARCO) in CAsT



Results - Training Set of CAsT
Corpus CAsT CAsT + D2Q (MARCO)

Retrieval Title Title + RM3 HQExp Title Title + RM3 HQExp

Re-ranking Title Title Title Title Title Title

R@1000 0.755 0.774 0.818 0.759 0.769 0.805

mAP 0.188 0.187 0.189 0.189 0.181 0.188

mRR@10 0.274 0.273 0.257 0.281 0.279 0.262

● RM3 improves recall

○ Treat queries in each turn independently still works

● D2Q only improves the case involving title in both stages

○ May due to the mismatch of queries between CAsT and pure MS MARCO

○ Predicted queries for CAR and WAPO are not considered

● HQE provides best performance with/without corpus modification



Coreference Resolution



Results - Annotated Subset of CAsT

Retrieval Title+RM3 Title+RM3 HQExp HQExp

Re-ranking Title Coref HQExp Coref

R@1000 0.897 0.897 0.859 0.859

mAP 0.258 0.397 0.274 0.374

mRR@10 0.358 0.552 0.433 0.544

+HAExp

R@1000 0.910 0.910 0.863 0.863

mAP 0.257 0.388 0.272 0.371

mRR@10 0.358 0.524 0.431 0.520

● Coreference resolution from 

CAsT host

● Evaluated on annotated subset 

of CAsT training set only

● HQE is enhanced by Coref in 

the re-ranking stage

● HAE still improves recall, but it 

hurts ranking metrics in the 

fine-tuning stage



Submissions



Overall Results - Training Set of CAsT

● Due to superiority of coreference resolution on the annotated training subset, we choose to submit heavily on 

combinations with Coref involved flow

Table 1: Training set

Condition 1 2 3 4 5 6

Retrieval Title Title Title HQExp HQExp HQExp

Re-ranking Title HQExp Coref Title HQExp Coref

R@1000 0.774 0.774

-

0.818 0.818

-mAP 0.187 0.194 0.189 0.192

mRR@10 0.273 0.282 0.257 0.264

+HAExp

R@1000 0.790 0.790

-

0.844 0.844

-mAP 0.187 0.192 0.193 0.197

mRR@10 0.273 0.279 0.268 0.277

Table 2: Co-reference effect on annotated subset

Condition 1 2 3 4 5 6

Retrieval Title Title Title HQExp HQExp HQExp

Re-ranking Title HQExp Coref Title HQExp Coref

R@1000 0.897 0.897 0.897 0.859 0.859 0.859

mAP 0.258 0.291 0.392 0.261 0.274 0.374

mRR@10 0.358 0.442 0.525 0.377 0.433 0.544

+HAExp

R@1000 0.910 0.910 0.910 0.863 0.863 0.863

mAP 0.257 0.285 0.388 0.261 0.272 0.371

mRR@10 0.358 0.440 0.524 0.377 0.431 0.520



Results on Evaluation Set of CAsT

RUN_TAG CFDA_CLIP_1 H2OLOO_2 H2OLOO_3 H2OLOO_4 H2OLOO_5 CFDA_CLIP_6 CFDA_CLIP_7 CFDA_CLIP_8

Indexed MARCO CAsT CAsT CAsT CAsT CAsT CAsT+D2Q CAsT+D2Q

Retrieval Title Title Title Title+RM3 HQExp Coref+RM3 Title HQExp

Re-ranking Coref HQExp Coref Coref Coref Coref HQExp Coref

+HAE V V

R@1000 0.412 0.632 0.632 0.639 0.689 0.812 0.611 0.695

mAP 0.226 0.274 0.324 0.321 0.354 0.395 0.269 0.363

mAP@5 0.071 0.066 0.082 0.081 0.096 0.101 0.068 0.099

NDCG@5 0.459 0.427 0.530 0.532 0.564 0.576 0.427 0.568

Automatic Runs



Conclusions



● Proposed two ad-hoc methods for conversational-information-seeking problem 

defined in Conversational Assistant Track (CAsT) in TREC 2019

● Two proposed methods are suitable for the dataset with few labels

● Coreference resolution is not addressed in the current setting

● Need a detailed analysis on the full combinations of corpus expansion/query 

expansion/history (Q&A) expansion



Thank you


