Evaluating Corporate Bonds with Complex Debt Structure

Liang-Chih Liu
Department of Information Management and Finance
National Chiao Tung University

Joint work with Prof. Tian-Shyr Dai and Prof. Chuan-Ju Wang

December 4, 2014
1st Conference on Recent Developments in Financial Econometrics and Applications
Outline

• Motivation
• Main Contributions
• Assumptions and Numerical Implementation
 - model assumptions
 - numerical implementation: trees and forests
• Numerical Results and Empirical Implications
 - 4 scenarios and the corresponding empirical implications
• Conclusions
Motivation
Motivation

• A corporate bond is a popular financing or investment tool.
 - outstandings in the US market: 2127 billions in 1996
 9617 billions in 2013 (from SIFMA)

• Among valuation methodologies,
 - the structural model of credit risk is a popular approach that associates
 \textit{observed bond prices} with \textit{firm-specific capital structure}
 (e.g., Merton(1974); Leland(1994), etc)

• Regarding the capital structure,
 - theoretical researches: equity + “oversimplified” debt
 e.g. equity + uniform debt (i.e., the debt containing only one bond)
 (e.g., Merton(1974); Black and Cox (1976); Leland(1994))
 - empirical observations: equity + the debt containing heterogeneous bonds
 (e.g., Rauh and Sufi (2010); Colla et al. (2013))
• Proxy real world observations with structure models
 - for example, structural models with uniform debt separately evaluate each bond of the same firm that actually exists simultaneously (e.g. Merton (1974), Kim et al. (1993), Briys and De Varenne (1997))

(Helwege and Turner, 1999; Huang and Huang, 2008)
• **To promote the empirical validity of structural models**
 - additional firm- or market-level factors are needed!
 (Jones et al., 1984; Collin-Dufresne et al., 2001)
 - the interdependence of bond issuers’ financing and investment decisions is highlighted!
 (Barclay et al., 2003; Hackbarth and Mauer, 2012; Kuehn and Schmid, 2014)

• **Given parameters and observed decisions**, we recognize the *observed debt structure* and pave another way to address that
 - rather than being evaluated separately, corporate bonds issued by the same firm must be priced considering the presence of other simultaneously outstanding bonds of that firm.
 (succeed Wang, Dai and Lyuu (2014))
 (respond to Colla et al. (2013))
 - this may greatly reconcile structural models with empirical observations.
 (respond to Eom et al. (2004); Davydenko(2012))
 - our valuation framework will provide theoretical insights and concrete quantitative measurements on these empirical phenomena.
Main Contributions
• A more intuitive valuation framework can be implemented!

- That is, corporate bonds of the same firm are priced considering the presence of other simultaneously existing bonds with different properties, such as different maturities, seniorities, etc.

• A structural model that characterizes the multidimensionality of corporate debt structure is developed!

- Four observable dimensions:
 (1) leverage ratio (2) maturity structure
 (3) priority structure (4) covenant structure

(Kisgen, 2006; Billett et al. 2007; Mauer et al., 2012; Gopalan et al., 2014)
• To implement the structural model with debt structure that has observable time-dependent debt service payments,

 we propose a novel quantitative framework:
 a forest with multi-layer trees

- A bond is a security with time-dependent debt service payments

- To capture the contingent changes of the debt structure due to early redemption, we need more than one tree and make them work collaboratively as a forest

- It may be an alternative way to solve the unsolved problem in Jones et al. (1983) (i.e., the problem to evaluate equity and the corresponding callable bonds of the same firm)
Numerous phenomena based on previous empirical researches are revisited through our valuation framework:

[1] the impact of rollover risk through the tunnel of bond market illiquidity on the existing bonds
 (He and Xiong, 2012; Gopalan et al., 2014; Nagler, 2014)

[2] the impact of a junior bond issuance to replace the existing bank loan on the existing senior bonds
 (Ingersoll, 1987; Linn and Stock, 2005)

[3] optimal call policy for callable bonds and call delay phenomenon
 (Ingersoll 1977; Longstaff and Tuckman, 1994; King and Mauer, 2000; Acharya and Carpenter, 2002; Jacoby et al., 2010)

[4] the effect of including poison put covenants in target firms’ bonds on bidders’ costs of debt financing
 (Cook and Easterwood, 1994; Cremers et al., 2007)
Assumptions and Numerical Implementation

- Model Assumptions
- Numerical Implementation: trees and forests
Model Assumptions

(A.1) There are no dividend payments or other disbursements to equity holders.

Ingersoll (1977); Collin-Dufresne et al. (2001); Avramov et al. (2007)

(A.2) Let a firm’s asset volatility as the proxy of the firm’s business risk and treat it as the result of the firm’s contemporaneous investment and financing decisions subject to the covenant restrictions included in the previously issued bonds

Merton (1974)

(A.3) A firm is assumed to issue more than one bond at different times to *comprise its debt structure observed*; we treat the debt structure as the result of the firm’s previous and current financing decisions.

(A.4) A firm files for bankruptcy and is liquidated immediately once it defaults on its debt obligation.

Ou et al. (2006) – Moody’s definition of default
Bris et al. (2010) – Immediate liquidation

The remaining assets are then distributed according to absolute priority rules.

Bris et al. (2006) – No violation of absolute priority rule
• Denote the market value of the firm’s asset at time t as \mathbf{V}_t

• Under the structural model of credit risk, corporate bonds and the corresponding equity are contingent claims on the issuing firm’s asset value, denoted as $\mathbf{B}_1(t,\mathbf{V}_t), \ldots, \mathbf{B}_N(t,\mathbf{V}_t), \mathbf{E}(t,\mathbf{V}_t)$

• Under the risk-neutral valuation associated with the analysis of taking both the investment and financing decisions as given, the firm’s asset value follows the dynamics:

$$\mathrm{d} \mathbf{V}_t = (r \mathbf{V}_t - P) \, \mathrm{d}t + \sigma \mathbf{V}_t \, \mathrm{d}z,$$

where

[1] r is the long-term average risk-free rate;
[2] σ is the volatility of the firm asset value, representing the firm’s business risk;
[3] $\mathrm{d}z$ is a standard Brownian motion;
[4] P is the firm’s annual required payments made continuously

• We do not consider the shock of the firm’s internal liquidity.
• Rather than the minus term \(-P\) in Eq. (1), the observed time-dependent payouts implied by the observed debt structure are needed to be captured faithfully.

• For example, let \(C_{t\downarrow j} \uparrow O\) and \(C_{t\downarrow j+1} \uparrow O\) be two required payouts made discretely at time \(t\downarrow j\) and \(t\downarrow j+1\), \(t\downarrow j < t\downarrow j+1\); \(t\uparrow-\) and \(t\uparrow+\) denote the time immediate before and after a required payout.

Then
\[
\begin{align*}
\Delta V_{t\downarrow j} \uparrow & = V_{t\downarrow j} - C_{t\downarrow j} \uparrow O \\
V_{t\downarrow j+1} \uparrow & = V_{t\downarrow j+1} - C_{t\downarrow j} \uparrow O
\end{align*}
\]

where \(V_{t\downarrow j+1} \uparrow-\) is derived from \(V_{t\downarrow j} \uparrow\) and Eq. (1) given \(P=0\).

• The firm determines to file for bankruptcy at time \(t\uparrow-\) once \(V_{t\uparrow} \leq 0\)
Previous literatures impose additional assumptions on P in Eq.(1) and default triggers

(a) There is a prespecified threshold value Π, $\Pi > 0$. The firm decides to file for bankruptcy at time t^- once $V_{t^+} \leq \Pi$

Black and Cox (1976), Longstaff and Schwartz (1995)

(b) Geske (1977) assumes $P=0$ for all $t > 0$ if a firm is solvent. The firm decides to file for bankruptcy at time t^- once $E(V_{t^+} , t^+) \leq 0$

(c) Leland and Toft (1996) assume $P=\delta V_{t^+} dt$ for all $t > 0$ if a firm is solvent and propose stationary debt structure:

- The firm will rollover all its bonds to keep the number of its outstanding bonds, sums of bond principals and annual coupon payments unchanged.

- The equity holders will absorb all deficiencies in required payments, including the rollover losses, to prevent bankruptcy.

The firm decides to file for bankruptcy at time t^- once $E(V_{t^+} , t^+) \leq 0$
However, these assumptions will lead to severe cross-sectional inaccuracy such as hump-shaped or downward-sloping credit spread curves. *(Lando, 2004; Eom et al, 2004; Davydenko, 2012)*

For example, *with the same parameters*,

- **Solid curves:** our models
- **Dashed curves:** others

(a) **VS.** Prespesify a default boundary
(b) **VS.** Geske’s framework
(c) **VS.** Leland and Toft’s framework

(the detailed discussions are listed in our
Numerical Implementation
- binomial/trinomial trees

• CRR Trees for the lognormal diffusion process:

\[dV \downarrow t = rV \downarrow t \, dt + \sigma V \downarrow t \, dz \]

[1] Size of one time step: \(\Delta t = T/n \)

[2] 4 parameters: \(u, d, P_{\downarrow u}, P_{\downarrow d} \):

\[u = e^{\sigma \sqrt{\Delta t}}, \quad d = 1/u \]

\[P_{\downarrow u} = e^{r \Delta t} - d/ \]

\[G \]

\[V_u \]

\[V \]

\[P_u \]

\[V_{ud} \]

\[V_{ud} \]

\[I \]

\[V \]

\[P_d \]

\[V_{id} \]

Cox, Ross and Rubinstein (1979)
The trinomial structure is used to deal with jumps in a firm’s asset value and to coincide critical locations, such as default boundaries:

\[V^u + 2\sigma\sqrt{\Delta t} \]

\[V^l - 2\sigma\sqrt{\Delta t} \]

With feasible branching probabilities \(p_{\downarrow u}, p_{\downarrow m}, p_{\downarrow d} \) that satisfying

\[
\begin{align*}
\sum p_{\downarrow u} \alpha &+ \sum p_{\downarrow m} \beta + \sum p_{\downarrow d} \gamma = 0 \\
\sum p_{\downarrow u} \alpha^2 &+ \sum p_{\downarrow m} \beta^2 + \sum p_{\downarrow d} \gamma^2 = 1
\end{align*}
\]

where

\[
\alpha = \beta + 2\sigma \sqrt{\Delta t} \\
\beta = \mu - \mu \\
\gamma = \beta - 2\sigma \sqrt{\Delta t}
\]

Dai and Lyuu (2010)
Numerical Implementation - a forest

- To capture the contingent changes of the debt structure due to early redemption, we need a forest.

- For example, a firm issues 2 straight bonds and 1 callable bond,
A forest with three-layer trees
Numerical Results and Empirical Implications

Robustness:

The following numerical results are generated by the aforementioned numerical models confirmed to

1. converge smoothly as the number of the time steps in a certain period increases
 Duffie (1996)
2. produce empirically observed spread-rate, spread-volatility and spread-leverage relations

(all the details about the robustness check are listed in our paper)

4 scenarios visited:

1. the effect of rollover risk on existing bonds
2. the effect of junior bond issuances to replace bank loans on senior bonds
3. the optimal call policy and call delay phenomena
4. the effect of including poison put covenants on bidders’ cost of debt financing
the effect of rollover risk on a firm’s existing bonds through the tunnel of bond market illiquidity

Two key parameters incorporated:

(1) bond transaction cost k (2) market condition proxy ξ

(He and Xiong, 2012)

Valuation effect:

(1) the spreads of not only the existing long-term bonds (with remaining time to maturity more than 16 years) but whole term structure increases with the amounts of bonds that will be rolled over (bonds maturing within 1 year)

(2) such effect would be more pronounced

[a] when the firm is unhealthy,
[b] when the maturing bond is replaced by a short-term bond,
[c] when the capital market is in recession

(Gopalan et al., 2014; Nagler, 2014)
• Debt structure: (1) 1-yr $B↓1$, 10-yr $B↓2$, 16-yr $B↓3$, 20-yr $B↓4$, 30-yr $B↓5$

(2) given the face of $B↓2$, $B↓3$, $B↓4$

(3) 5 equal priority bonds

Scenario: A firm will replace the 1-yr $B↓1$ by another 5-yr or 25-yr bond
the effect of a junior bond issuance (NJB) to replace the existing bank loan (BB) on the existing senior bond (SB)

Valuation effect:

Given bank loans are the most senior bond type in the firm, (Welch, 1997; Gorton, 2000)

(1) The spread of the existing senior bond decrease ($\Delta \text{Spread} \downarrow \text{SB} < 0$);
 such effect would be more pronounced with the replacement size (\therefore the relative priority of the senior bond is improved)
(2) ceteris puribus, the maturity of the junior bond makes small difference “on average” until the firm becomes relatively unhealthy (\therefore the existence of payment blockage covenant)
 (Ingersoll, 1987)
 (Linn and Stock, 2005)
• Debt structure:
 (1) BB, 10-yr SB, 20-yr JB
 (2) given the face value of the SB
 (3) BB \succ SB \succ JB

Scenario: A firm now issues an otherwise identical NJB to replace the existing BB

Given total face value of bonds and the firm’s credit quality

SB WITHOUT the payment blockage covenant

SB WITH the 1-yr payment blockage covenant
Given total face value of bonds and the replacement size

\[
\Delta \text{Spread}_{0 \rightarrow \text{SB}} \quad \text{(bp)}
\]

unhealthier firm

healthier firm

the maturity of the new junior bond makes small difference “on average” until the firm becomes relatively unhealthy
the optimal call policy and call delay phenomenon

the optimal call policy:
redeeming bonds to maximize equity holders’ value

Given other thing being equal,

(a) low level of interest rates precipitate calls
(b) long (high-coupon) callable bonds are called prior to short (low-coupon) callable bonds

(c) the deterioration in the issuing firm’s creditworthiness delays calls.

the reason may be
- (c.1) interaction effect (single-bond case)
- (c.2) wealth transfer effect (multiple-bond case)
• Debt structure: single-bond case: a 16-yr callable
 multiple-bond case: 5-yr, 10-yr, 16-yr, 20-yr and 30-yr bonds,
 the 10-yr is a short callable.
 the 16-yr is a long callable.

Redeem BOTH the short and long callables!
Redeem ONLY the long callable!

the single-bond case vs. the multiple-bond case

- low level of interest rate
- given the level of interest rate
the effect of including poison put covenants in target firms’ bonds on bidders’ cost of debt financing when finishing LBOs

Valuation effect:

By changing the bidder’s debt maturity structure, poison put covenants significantly increase the bond value of the target firm by increasing the bidder’s costs of debt financing.

(Cremers et al., 2007)
• **Scenario:** A bidder finishes a LBO by issuing 4 otherwise identical bonds

Debt structure: (1) 5-yr $B\downarrow 1$, 10-yr $B\downarrow 2$, 16-yr $B\downarrow 3$, 20-yr $B\downarrow 4$, 30-yr $B\downarrow 5 \uparrow \text{bidder}$, 30-yr $B\downarrow 5 \uparrow \text{target}$

(2) $B\downarrow 1$, ..., $B\downarrow 4$ and $B\downarrow 5 \uparrow \text{bidder}$ are senior to $B\downarrow 5 \uparrow \text{target}$

the bidder’s costs of debt financing
Conclusions

• A structural model of credit risk with debt structure simultaneously considering four observable dimensions is developed:

- the forest can capture the contingent changes of debt structure, such as the early redemption of bonds with call provisions or poison put covenants
• Compared with existing structural models, our valuation framework can produce the results that are more consistent with the observations documented already in empirical studies.

- including 8 observations:
 [1] upward sloping credit spread curves
 [2] spread-rate relation
 [3] spread-volatility relation
 [5] the effect of rollover risk on existing bonds
 [6] the effect of junior bond issuances to replace bank loans on senior unsecured bonds with or without payment blockage covenants
 [7] call delay phenomena
 [8] the effect of including poison put covenants on bidders’ cost of debt